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Exact radiation boundary conditions on the surface of a sphere are presented for the single-particle time-
dependent Schrödinger equation with a localized interaction. With these boundary conditions, numerical com-
putations of spatially unbounded outgoing wave solutions can be restricted to the finite volume of a sphere. The
boundary conditions are expressed in terms of the free-particle Green’s function for the outside region. The
Green’s function is analytically calculated by an expansion in spherical harmonics and by the method of
Laplace transformation. For each harmonic number a discrete boundary condition between the function values
at adjacent radial grid points is obtained. The numerical method is applied to quantum tunneling through a
spherically symmetric potential barrier with different angular-momentum quantum numbers l. Calculations for
l=0 are compared to exact theoretical results.
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I. INTRODUCTION

For more than 40 years, finite-difference techniques have
been an important tool for the study of time-dependent quan-
tum systems in atomic and molecular physics �1–3�. One of
the most basic finite-difference methods for the time-
dependent Schrödinger equation �TDSE� was introduced by
Goldberg et al. �1� to demonstrate time-dependent wave-
packet scattering from one-dimensional �1D� model poten-
tials. This method has been based on an implicit time-
propagation scheme, originally proposed for the heat-flow
equation by Crank and Nicolson �4�. For the study of more
realistic quantum systems advanced techniques for multidi-
mensional computations have been developed. These in-
clude, e.g., alternating-direction-implicit �ADI� methods
�5–7�, split-operator and fast Fourier transform �FFT� meth-
ods �8,9�, mixed finite-difference/harmonic expansion meth-
ods �10–13�, and B-spline methods �7,14�.

One of the limitations of numerical computations arises
from the finite size of the computational grid. Spatially un-
bounded solutions have to be represented on a necessarily
finite computational domain. For this purpose, one often uses
periodic, absorbing, or rigid-wall boundary conditions.
Rigid-wall boundary conditions limit the time evolution up
to the arrival of the wave function at the grid boundaries.
While periodic boundary conditions are very useful for
many-particle systems, absorbing boundary conditions are
more commonly applied to isolated single- or few-particle
systems. Absorbing boundaries can be achieved by suitably
chosen complex potentials �15,16� or complex coordinates
�17�. However, artificial damping of the wave function at the
boundaries is not a perfect choice because the shape and the
extent of the absorber have to be adapted to the approaching

wave function in order to minimize unavoidable residual re-
flections. Moreover, if the absorber is not chosen properly
the resulting reflections lead to a dissipation of information
about the solution exterior to the absorber.

In this paper, we follow a different approach which has
attracted more and more interest over the past years. A
Green’s function method is used to gain the boundary con-
ditions for outgoing waves. These boundary conditions are
exact but they are in general nonlocal in space and time.
Such boundary conditions are familiar from electrodynamics
�18� and by analogy, we call them radiation boundary condi-
tions. They are also known as transparent, outgoing wave,
nonreflecting, or integral boundary conditions. In previous
work it was shown that radiation boundary conditions can be
expressed in terms of the Green’s function of a free particle
in the asymptotic outside region �19�. The Green’s function
method has also been treated in some detail in �20,21�. In
�21� semiclassical approximations to the asymptotic Green’s
function in the presence of a laser field have been given.
Other approaches to boundary-free propagation of solutions
of the TDSE have also been discussed �22�. Up to now ra-
diation boundary conditions have been mostly applied to 1D
problems and different forms of discrete representations have
been gained for that purpose �19–21�. Discrete radiation
boundary conditions in 1D and occasionally in two dimen-
sions �2D� have also been a subject of continuing research in
applied mathematics �23–28�.

In the present work, it is our goal to derive the exact form
of the radiation boundary conditions in three dimensions
�3D� on the surface of a sphere. The sphere is introduced
here as an artificial boundary between a 3D quantum system
and its surrounding region. Such a separation is based on the
assumption that the potential and the initial wave function
can be completely localized within a sphere. For long-range
potentials the treatment will be less accurate, although satis-
factory results may still be obtained if the radius of the
sphere is chosen sufficiently large. The basic difference be-
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tween previous 1D and the present spherical 3D problems is
the fact that for a nonzero angular-momentum quantum num-
ber l, the radial motion is governed by an effective potential
l�l+1� /2r2 with a range r=O�l�. For sufficiently large
angular-momentum quantum numbers, it is therefore essen-
tial to include the effective potential in the calculation of the
Green’s function. In this work we present an exact solution
of this problem that is based on the method of Laplace trans-
formation and an expansion of the Laplace-transformed
Green’s function in partial fractions. Similar methods have
been used in �29� for the 3D hyperbolic wave equation.

For a quantum state with angular-momentum quantum
number l, the resulting boundary condition is expressed as a
sum of l+1 convolution integrals in time. For a large radius
of the computational domain one obtains asymptotically the
1D result �19�. The present result is a generalization that is
exact for arbitrary radii. For large values of l, the Green’s
function of the system �i.e., the sum of the convolution ker-
nels� decays very fast in time. This means that one may
truncate the time interval for the convolution integrals,
thereby reducing the expense for each time step n from lin-
early rising with n to constant. Due to the shorter relaxation
times for larger quantum numbers l the numerical effort of
the method actually gets reduced with increasing complexity
of the wave function.

As an example, we study the problem of spontaneous
quantum decay of a particle in a spherically symmetric po-
tential well with finite range. Recently, the problem of spon-
taneous quantum tunneling has received renewed attention
and exact theoretical results for the tunneling of spherical S
waves have been reported. We show that the present numeri-
cal method is able to accurately reproduce a solution derived
by Felderhof for a delta-function barrier model �30�. In ad-
dition, we extend the calculations to angular-momentum
quantum numbers up to l=15 and demonstrate the efficiency
and accuracy of radiation boundary conditions in such calcu-
lations.

The present work is organized as follows. In Sec. II, the
radiation boundary conditions are derived by the Green’s
function method. In Sec. III, a finite-difference representa-
tion of these boundary conditions is obtained that can be
used with a standard Crank-Nicolson algorithm. In Sec. IV,
the application of these boundary conditions to quantum tun-
neling is discussed and the validity and accuracy of the nu-
merical procedure is thereby demonstrated. The system we
investigate is a generic model of quantum tunneling and we
are able to compute the static �long-time limit� decay rates as
a function of the quantum number l and the shape of the
tunneling barrier. All equations will be written in atomic
units such that h /2�=1, me=1, and qe=−1 �h: Planck-
constant, me: electron mass, qe: electron charge�.

II. RADIATION BOUNDARY CONDITIONS ON THE
SURFACE OF A SPHERE

The wave function ��r , t� of a particle in a potential
V�r , t� is governed by the TDSE

i�t��r,t� = �−
1

2
� + V�r,t����r,t� . �1�

We are interested in spatially unbounded solutions that arise
from a localized initial state in a localized potential. In the

course of time evolution, the unbound part of the wave func-
tion will spread toward infinity. In most applications, the use
of spherical coordinates �r ,� ,�� will require boundary con-
ditions on the surface of a sphere of radius r=R. For defi-
niteness, it will be assumed that both the initial wave func-
tion and the time-dependent potential vanish in the outside
region r�R.

To derive radiation boundary conditions, it is sufficient to
consider the evolution of the wave function in the outside
region r�R,

i�t��r,t� = −
1

2
���r,t�, ��r,0� = 0. �2�

Expanding the angular dependence of the wave function in
spherical harmonics,

��r,�,�,t� = �
l=0

�

�
m=−l

l

�l�r,t�Yl
m��,�� , �3�

yields for each angular-momentum quantum number l,

L�r,t��l�r,t� = 0, �l�r,0� = 0, r � R , �4�

with

L�r,t� = i�t +
1

2r2 ��rr
2�r − l�l + 1�� .

In the outside region, the radial-wave functions �l�r , t�
propagate independent of each other and independent of the
azimuthal quantum number m. As a result of the partial-wave
expansion �3�, it is sufficient to impose radiation boundary
conditions on the radial-wave functions �l�r , t�.

We now follow the Green’s function approach as de-
scribed in �19,31�. For arbitrary sufficiently smooth functions
�1�r , t� and �2�r , t�, the Green’s identity of the operator L is
given by

�
0

�

dt��
R

�

dr�r�2	�2�L��1� − �1�L���2�


=
1

2
�

0

�

dt�r�2	�2��r��1� − �1��r��2�
�r�=R
�

+ i�
R

�

dr�r�2	�2��1�
�t�=0
� , �5�

where �1,2� =�1,2�r� , t��, L�=L�r� , t��, the prime denotes inte-
gration variables, and the star the complex conjugate. Based
on the Green’s identity one can obtain an integral represen-
tation of solutions of Eq. �4�. For this purpose the function
�1 is chosen as a solution �l of Eq. �4� and the function �2 is
replaced by the Green’s function Gl�r ,r� , t− t�� that describes
the propagator from a point �r� , t�� to a point �r , t�. Because
of the time independence of the coefficients of L, the Green’s
function depends only on the time difference 	= t− t�. More
definitely, the Green’s function Gl�r ,r� ,	� is defined as a
solution of the inhomogeneous differential equation
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L�r�,	�Gl�r,r�,	� =
R2

r�2
�r − r��
�	� , �6�

with L�r� ,	� given by Eq. �4�. It is noted that L�r� ,	�
=L��r� , t�� is also the operator that acts on the function �2� in
the Green’s identity �5�. On the right-hand side, the factor
r�−2 accounts for the areal density of a spherical surface with
radius r� and the constant factor R2 is included for conve-
nience. In addition the Green’s function is required to satisfy
the initial and boundary conditions,

Gl�r,r�,	��	�0 = 0, �7a�

�r�Gl�r,r�,	��r�=R = 0, �7b�

�
0

�

dt�r�2	Gl�r��l� − �l��r�Gl
�r�→� = 0. �7c�

It vanishes for all times t�� t. In contrast to the more famil-
iar Green’s function for infinite space �32�, the present
Green’s function is required to have a vanishing normal de-
rivative on the inner spherical boundary r�=R of the outside
region. The last boundary condition relates the asymptotic
behavior of the Green’s function at infinity to that of the
outgoing wave solution �l.

Using the Green’s identity �5� with �2=Gl being the
Green’s function �6� and �1=�l being a solution of Eq. �4�
one obtains an integral representation for the wave function
in the outside region in terms of the boundary values on the
surface r=R,

�l�r,t� =
1

2
�

0

t

d	Gl�r,R,	��r��l�R,t − 	�, r � R .

Taking the limit r→R and denoting �l�r , t� �r=R= f l�t�,
�r�l�r , t� �r=R=gl�t� one obtains a relationship between the
function values f l�t� at time t and the normal derivatives
gl�t�� at all previous times t� on the boundary r=R,

f l�t� =
1

2
�

0

t

d	Gl�R,R,	�gl�t − 	� . �8�

This is the radiation boundary condition on the spherical
surface r=R that can be imposed on numerical solutions for
the inside region. It is expressed in terms of the Green’s
function Gl�R ,R ,	� with both spatial points evaluated on the
surface.

The Green’s function will now be determined by the
method of Laplace transformation. The Laplace transform

ĥ�� of a function h�t� with h�t�=0 for t�0 and h�t��ect for
t→� will be defined as

ĥ�� = �
0

�

dth�t�eit, I	
 � c . �9�

Here we use a complex frequency  instead of the more
common complex variable s=−i. The Laplace transform

Ĝl�r ,r� ,� of the Green’s function Gl�r ,r� ,	� with respect to
the variable 	 satisfies the ordinary differential equation,

� 1

r�2�r�r�
2�r� + 2 −

l�l + 1�
r�2 �Ĝl�r,r�,� = 2

R2

r�2
�r − r�� ,

�10�

with the boundary conditions

�r�Ĝ�r,r�,��r�=R = 0,

� �r�Ĝl�r,r�,�

Ĝl�r,r�,�
�

r�=�

= � �r��̂l�r�,�

�̂l�r�,�
�

r�=�

. �11�

The boundary condition at infinity follows from the corre-
sponding boundary condition in Eq. �6� with the help of the
convolution theorem for the Laplace transform

�
0

�

dteit�
0

�

dt�f�t − t��g�t�� = f̂��ĝ�� ,

where f�t�=g�t�=0 for t�0. In the region r��r, the solu-
tions of Eq. �10� are known as the spherical Bessel and Han-
kel functions �32,33�. The particular solution that satisfies the

outgoing wave condition for �̂l�r� ,� in Eq. �11� is

Ĝl�r,r�,� = Cl�r,�hl
�1����� , �12�

with ��=kr�, k=2, and the spherical Hankel function
hl

�1��z�. For �z�→�, it has the appropriate asymptotic
behavior

hl
�1��z� →

1

z
ei�z−�l+1��/2�. �13�

The solution for r��r can be matched to a corresponding
solution for the region R�r��r by using at r=r� the jump
conditions,

Ĝl�r,r�,��r�=r−
r+ = 0,

�r�Ĝl�r,r�,��r�=r−
r+ = 2

R2

r2 , �14�

where r− denotes the left-side and r+ the right-side limit to
the point r. Evaluating the jump condition at r=R with the
solution �12� on the right and the boundary condition �11� on
the left side yields

Cl�R,�k��hl
�1������=kR = 2. �15�

It follows that the Laplace transform of the Green’s function

Ĝl�R ,R ,� on the boundary is given by the expression �19�

Ĝl�R,R,� =
2

k
� hl

�1����
��hl

�1����
�

�=kR

. �16�

Sometimes it is more convenient to use instead of the
radial-wave functions �l�r , t� the related functions
�l�r , t�=r�l�r , t�, satisfying a simpler radial-wave equation

M�r,t��l�r,t� = 0, �l�r,0� = 0, r � R , �17�

with
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M�r,t� = i�t +
1

2
�r

2 −
l�l + 1�

2r2 .

This transformation shows that the spherically symmetric
three-dimensional problem can be reduced to the one-
dimensional problem, except for the additional centrifugal
potential for nonzero angular momentum.

The Green’s identity for the operator M and the corre-
sponding integral representation of the solution �l can be
derived along analogous lines. For completeness, we briefly
summarize the corresponding results. The Green’s function is
now denoted by Hl�r ,r� ,	� and defined by the equations

M�r�,	�Hl�r,r�,	� = 
�r − r��
�	� , �18a�

Hl�r,r�,	� = 0, for 	 � 0, �18b�

�r�Hl�r,r�,	��r�=R = 0, �18c�

�
0

�

dt�	Hl�r��l� − �l��r�Hl
�r�→� = 0. �18d�

The boundary values �l�t�=�l�R , t� and �l�t�
=�r��l�r� , t�� �r�=R are related by the radiation boundary con-
dition

�l�t� =
1

2
�

0

t

d	Hl�R,R,	��l�t − 	� , �19�

and the Laplace transform of the Green’s function Hl�R ,R ,	�
is given by

Ĥl�R,R,� =
2

k
� �hl

�1����
����hl

�1�����
�

�=kR

=
Ĝl�R,R,�

1 +
1

2R
Ĝl�R,R,�

.

�20�

Note that both Green’s functions agree in the limit R→�
when the effects of spherical convergence become small. It is
also of interest to confirm the correct behavior for zero an-
gular momentum, l=0, when the centrifugal potential
vanishes. The spherical Hankel function for l=0 is given by

h0
�1���� = −

i

�
ei�. �21�

One therefore obtains from Eqs. �16� and �20�

Ĝ0�R,R,� = −
2i

k + i/R
, �22a�

Ĥ0�R,R,� = −
2i

k
, �22b�

respectively. The Green’s function Ĥ0�R ,R ,� is exactly the
one used in previous 1D-model calculations �19�. The

Green’s function Ĝ0�R ,R ,� is related to Ĥ0�R ,R ,� by the
transformation �20�. We now consider a generalization of the
Green’s function approach to three dimensions with nonzero
angular momentum.

In order to perform the inverse Laplace transform of Eq.
�16�, the spherical Hankel function hl

�1���� is represented in
powers of 1 /� by the polynomial �33�

hl
�1���� =

ei�

il �i��−1�
�=0

l �l +
1

2
,���− 2i��−�, �23�

with the coefficients defined by

�l +
1

2
,�� =

�l + ��!
� ! ��l − � + 1�

.

The derivative ��hl
�1���� can similarly be represented by use

of the recurrence relation �33�

d

d�
hl

�1���� =
l

�
hl

�1���� − hl+1
�1� ��� . �24�

As a result, the Laplace transform of the Green’s function
�16� is obtained as a rational function of k,

Ĝl =
2

k
�
�=0

l �l +
1

2
,���− 2i�−��kR�−�−1��

�=0

l

l�l +
1

2
,��

��− 2i�−��kR�−�−2 + i�
�=0

l+1 �l +
3

2
,���− 2i�−��kR�−�−1�−1

.

This rational function may be expanded in partial frac-
tions. It turns out that for each angular-momentum quantum
number l there are l+1 simple poles,

Ĝl�R,R,� = 2�
j=1

l+1
� j

k − kj
. �25�

In the special case l=0, it follows from Eq. �22� that
�1=−i and k1=−i /R. For l�0, the roots kj and coefficients
� j can be calculated numerically. A useful sum formula for
the coefficients � j is given by

�
j=1

l+1

� j = − i . �26�

It follows from the asymptotic behavior of the Green’s func-
tion for large arguments, kR→�. Using the asymptotic rep-
resentation �13� and setting k�kj in Eq. �25� one finds

Ĝl → −
2i

k
=

2

k
�
j=1

l+1

� j , �27�

leading to Eq. �26�.
For each pole in the representation �25�, the inverse

Laplace transform can readily be performed �33�. This yields
the result

Gl�R,R,	� = 2�
j=1

l+1

� j� 1
2�i	

− i
kj

2
w�zj�� ,

where zj =−kj
i	 /2 and
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w�z� = e−z2
erfc�− iz�

is known as the complex error function. Using Eq. �26�, the
Green’s function separates into two parts, the first of which is
independent of l,

Gl�R,R,	� =
− 2i

2�i	
− i�

j=1

l+1

� jkjw�zj� . �28�

The first part in Eq. �28� is the Green’s function
H0�R ,R ,	� that corresponds to the inverse Laplace transform
of Eq. �22�. It is well known from previous 1D calculations
�19�. Numerical test calculations for a free wave packet have
indicated that this one-dimensional approximation produces
virtually transparent boundary conditions for R�100. For
smaller computational domains, however, the full Green’s
function �28� should be applied at the boundary.

Some examples of the Green’s function �28� are shown in
Fig. 1. The formula has been evaluated on a sphere with
radius R=50 for three different angular-momentum quantum
numbers l=0, 5, and 15. For comparison, the Green’s func-
tion H0 for a plane surface is also shown. For l=0 the
Green’s function G0 is slightly different from H0 due to the
differences between the radial operators �4� and �17� for a
finite radius. For nonzero angular momentum the differences
become more pronounced due to the presence of the centrifu-
gal potential. With increasing angular momentum the
Green’s function �28� decays much faster than the one-
dimensional one. It is noted that the time axis is logarithmic
and therefore the characteristic relaxation time, e.g., for
l=15, is actually largely reduced. Truncating the integral �8�
after the characteristic relaxation time of Gl may signifi-
cantly reduce the numerical effort especially for large
angular-momentum quantum numbers.

III. DISCRETE RADIATION BOUNDARY CONDITIONS

We now demonstrate the applicability of the radiation
boundary conditions to numerical solutions of the TDSE �1�
in three dimensions. For this purpose, a localized spherically
symmetric potential V�r� has been chosen. Using the trans-
formation �=r� and an expansion of the wave function with
respect to spherical harmonics, the radial parts of the wave
function are governed for each angular-momentum quantum
number l by the equation

i�t�l = H�t,r��l,

H = �−
1

2
�r

2 +
l�l + 1�

2r2 + V�r,t�� . �29�

The functions �l�r , t� are subject to the boundary conditions
�l�r , t�=0 at the origin r=0 and to the radiation boundary
conditions �8� on the sphere r=R.

The numerical solution has been based on a finite-
difference representation of Eq. �29� in accordance with the
familiar Crank-Nicolson �CN� scheme �4�. The computa-
tional domain is represented on a grid with equidistant steps
in both time and space

t = n�t, n = 0 ¯ N ,

r = �j + 1��r, j = 0 ¯ M .

The differential operators �t and �r
2 are discretized using

center-point rules. The resulting CN scheme,
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FIG. 1. Real �solid� and imaginary �dashed� parts of the Green’s function �28� and the one-dimensional �l–independent� Green’s function
�dotted� at various values of l for R=50. The real part of the one-dimensional Green’s function is equal to its imaginary part.

RADIATION BOUNDARY CONDITIONS FOR THE … PHYSICAL REVIEW E 79, 056709 �2009�

056709-5



�1 +
i�t

2
Hn+1/2��l

n+1 = �1 −
i�t

2
Hn+1/2��l

n, �30�

is correct up to errors quadratic in �t and �r. The scheme is
well known to be numerically stable and to preserve the uni-
tarity of the exact time evolution operator. The finite-
difference representation of the spatial differential operator
�1+ i�t

2 Hn+1/2� represents a tridiagonal matrix. At each time
step n, the numerical solution can be computed using a de-
composition into lower and upper triangular matrices �LU
decomposition�, which in the case of tridiagonal matrices
takes O�M� computation steps.

At the border j=M of the computational domain we now
have to impose the boundary condition �8� with the Green’s
function �28� yielding

f l�t� = �
0

t

d	
− i

2�i	
gl�t − 	� + �

0

t

d	�l�R,	�gl�t − 	� ,

�l�R,	� = − i�
j=1

l+1

� j
kj

2
w�− kji

	

2
� . �31�

The square-root singularity in the first integral at 	=0 can be
removed by a partial integration. Noting that the initial wave
function is localized inside the region r�R one obtains the
more suitable form,

f l�t� = �
0

t

d	�2i	

�
�	 + �l�R,	��gl�t − 	� . �32�

The numerical integration of the kernels �l�R ,	� represents
no basic difficulty. They are sufficiently smooth and can be
computed and tabulated once in a preprocess. One example
for l=15 and R=50 is shown in Fig. 2.

To derive a finite-difference representation of this bound-
ary condition with the same accuracy as in the CN scheme,
the boundary r=R is taken as the center point between M�r
and �M −1��r,

� f l
n =

�l
M,n + �l

M−1,n

2

gl
n =

�l
M,n − �l

M−1,n

�r
� + O��r2� .

Using the trapezoidal rule for the time integration in Eq.
�32�, one obtains the discrete boundary condition

Bl
n = �1 − A −

2�t

�r
�l

0��l
M,n+1 + �1 + A +

2�t

�r
�l

0��l
M−1,n+1,

�33�

where

A =
− 2i�t

�r2�i
,

Bl
n = A��l

M−1,n−1 − �l
M,n−1� +

2�t

�r
�
�=0

n

�l
�+1��l

M,� − �l
M−1,��

+ A�
�=1

n−1

n + 1 − ���l
M,�+1 − �l

M−1,�+1 − �l
M,�−1

+ �l
M−1,�−1� .

The boundary condition �33� couples the wave function
on the boundary only to its nearest neighbor in space. As a
result, it conserves the tridiagonal form of the CN scheme.
Also, the discretization error of the boundary condition is the
same as for the Crank-Nicolson algorithm, namely,
O��r2 ,�t2�. Therefore, the accuracy of the overall algorithm
is not affected. After the discretized kernels �l

� have been
computed in a preprocess, the evaluation of Eq. �33�at run-
time of the program means simply a summation of O�n�
floating point numbers in each time step n.

The computation times required with the present radiation
boundary conditions can be estimated in the same manner as
in �19� �Eq. �2.30��. For each quantum number l the total
computation time T scales as

T = �MN + ��N + N2� + � , �34�

where M is the number of spatial grid points, N the number
of time steps, and �, �, and � are numerical coefficients. The
first term accounts for the inversion of the tridiagonal matrix
with O�M� operations at each time step, the second term for
the calculation of the boundary conditions with O��n=0

N n�
operations, and the third term for other computations at the
beginning and end of the time integration. The computation
times measured on a modern laptop PC follow nicely this
scaling with the coefficients given by �=8�10−7 s,
�=1.7�10−8 s, and ��1 s. The longest calculations per-
formed in this work, corresponding to M =500 �R=50 with
�r=0.1� and N=2�105 �T=104 with �t=0.05�, require
about 12 min.

Finally, it is noted that the accuracy of the radiation
boundary conditions could be improved up to the accuracy
O��r4� at the cost of coupling the solution on the last point
of the grid to its nearest and next-nearest neighbors. As a
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FIG. 2. Real �solid� and imaginary �dashed� parts of the integral
kernel �l�R ,	� for l=15 and R=50.
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consequence, one would have to invert a matrix which is
tridiagonal everywhere except in the lower-right corner, in
which it would have a 3�3 block of nonvanishing values.
This inversion could still be done in O�M� steps, provided
that M �3. This accuracy will be consistent with some im-
proved numerical schemes for the TDSE using a Numerov
method for the spatial discretization of the wave function
�11,13�. Another approach to improve the accuracy of radia-
tion boundary conditions has been described in �25–28�.
Here the TDSE is first discretized on an infinite domain and
then boundary conditions are derived for the discrete prob-
lem, thereby avoiding any further discretization errors. In the
present work, we did not follow this more rigorous approach
for the reason of simplicity.

IV. QUANTUM TUNNELING THROUGH
A POTENTIAL BARRIER

As an application of the present numerical method, we
consider the evolution of quantum tunneling through spheri-
cally symmetric potential barriers. Recently, the long-time
behavior of quantum tunneling has attracted renewed atten-

tion and an exact analytical solution of the initial-value prob-
lem for a spherically symmetric potential barrier has been
obtained �30�.

This work gives us the opportunity to check the results of
our numerical method against an analytically known refer-
ence system. In accordance with one of the analytic models,
we have chosen the initial wave function and the potential as

�0�r� = 2��r���1 − r�sin��r� , �35a�

V�r� = �10/w for �1 − w� � r � 1

0 elsewhere.
� �35b�

For w�1, the square-well potential approaches the delta-
function barrier model used in the analytic work. We per-
formed computations with a width w=0.01. Radiation
boundary conditions have been imposed at the outer border
R=2�100. Because of the strong confinement of the initial
wave function and the resulting rapid phase oscillations, a
fine graining of the computational domain with
�t=5�10−4, �r=10−3 had to be chosen. Under these condi-
tions, we were able to reproduce with excellent quantitative
accuracy the analytical result �30�. The corresponding nu-
merical wave function is shown in Fig. 3. One can recognize
the evolution of the outgoing wave packet superposed by a
wave reflected from the scattering center.

Having validated the numerical method for the case l=0,
we now proceed to the general case l�0. As a model poten-
tial we have chosen a spherical barrier of finite height,

V�r� = �V0 � 0 for R1 � r � R2

0 elsewhere.
� �36�

Inside the potential well, the initial wave function �0�r� has
been prescribed in the form

�0 = ��t = 0� = exp�−
�r − r0�2

�
�Yl

0��,�� . �37�

The value of � has been adjusted in such a manner that the
initial energy has always the same value E0. The wave func-
tion � is then propagated in time using the numerical solver
described in Sec. III. In several long-time computations the
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FIG. 3. Quantum tunneling of an initially localized isotropic
wave function through a spherically symmetric delta-function po-
tential as given by Eq. �35�. At the times shown, the initial state is
already strongly depleted and a standing-wave structure between
the outgoing wave packet and the potential well has been estab-
lished. The numerical result compares very well to the analytical
solution from �30�, Fig. 3.
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FIG. 4. Comparison of the reference solution to a boundary at R=2000 �dotted� to solutions with radiation boundary conditions at
R=50 �solid� and R=100 �dashed� and to the solution with absorbing boundary conditions in a region between R=50 and R=60 �gray� after
104 time steps. Shaded bar indicates the position of the potential well. Simulation parameters: E0=0.5, r0=25, R1=36.25, R2=38.75,
V0=0.1, �t=0.05, �r=0.1.

RADIATION BOUNDARY CONDITIONS FOR THE … PHYSICAL REVIEW E 79, 056709 �2009�

056709-7



evolution of tunneling rates has been studied for a fixed ini-
tial energy as a function of the angular-momentum quantum
number.

Before looking at the physical properties of this system
we have validated the quality of the discretized radiation
boundary conditions. For this purpose, test calculations were
carried out with identical initial wave functions and poten-
tials on grids with identical discretization parameters but dif-
ferent spatial dimension. In the CN algorithm �30�, informa-
tion can travel two grid points per time step at maximum.
Therefore, if the initial wave function is well localized left to
the potential barrier, the solution on a grid with M �2N can
be taken as a reflection-free reference. The reference solution
was compared to the solutions calculated on smaller grids
with radiation boundary conditions. As can be seen in Fig. 4
the solutions are in perfectly good agreement even for rather
small grids �R=50� and large angular momenta �l=15�.
These results are also compared to those from simpler ab-
sorbing boundaries. For this comparison, we have chosen an
absorbing potential,

Vabs = − ic�r − R�, R � r � 1.2R , �38�

with a moderate absorber thickness of 0.2R=10 a.u.. The
coefficient c was optimized for maximum absorption, yield-
ing c=0.1 for l=0 and c=0.046 for l=15. The corresponding
results, shown in Fig. 4 by the gray line, still indicate major

perturbations due to reflections from the boundary. To
achieve an accuracy comparable to that with radiation
boundary conditions, we had to increase the absorber thick-
ness to about 100 a.u. in these calculations.

To gain a more quantitative measure of residual wave-
function reflection from the boundaries the final wave func-
tions have been normalized to their own maximum value,

�S�r� � ��r,t = N�t�/���r,t = N�t��max.

Then the difference of the scaled probability densities from
the reference solution on the large grid and the solution with
radiation boundary conditions on the smaller grid is evalu-
ated,

���S�2 � ��S�Reference
2 − ��S�RBC

2 .

As shown in Fig. 5, the deviation in the scaled probability
densities actually stays very small even for long computation
times.

Finally, we discuss the angular dependence of tunneling
rates obtained from a number of long-time simulations with
radiation boundary conditions at R=50. The angular-
momentum quantum number has been varied from l=0 up to
l=15. Looking at the results in Figs. 6–9 the following be-
havior can be observed.

During an initial transient phase, the wave function will
spread out until it gets reflected back and forth by the poten-
tial barrier �36� on the one side and the centrifugal barrier
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FIG. 5. The deviation in the scaled probability densities after 104 time steps for radiation boundary conditions at R=50. All simulation
parameters are the same as in Fig. 4.
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FIG. 6. A snapshot of the wave function for l=15, E0=0.5,
R1=36.25, R2=38.75, V0=0.1, �t=0.05, and �r=0.1 at time
t�2500. Shaded bar shows the position of the finite potential.
Dashed: real part, dotted: imaginary part, solid line: modulus.
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FIG. 7. Static shape functions Sl for calculations with the pa-
rameters E0=0.5, R1=36.25, R2=38.75, V0=0.1, �t=0.05, and
�r=0.1 at different values of l.
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Vef f = l�l+1� / �2r2� on the other side. In each reflection pro-
cess, part of the wave function tunnels trough the barrier and
ultimately leaves the computational domain through the open
boundary. This behavior is typically observed for a few hun-
dred atomic time units.

Gradually, the wave function relaxes into an exponentially
decaying tunneling state with a decay rate �l and a static
shape function Sl�r�,

��t� →
t→�

cle
−�lteitSl�r�Yl

0��,�� . �39�

An example of the asymptotic stationary state is shown in
Fig. 6 for l=15.

For rising values of l, the centrifugal barrier forces the
shape function Sl to localize closer and closer to the barrier,
thereby enhancing the tunneling process and the static decay
rate. Some examples of shape functions for different angular-
momentum quantum numbers l are represented in Fig. 7

The approach toward a stationary state can also be recog-
nized from the evolution of the occupation probability for the
particle within the volume of the sphere r�R. The occupa-
tion probability Pl and the related decay rate �l have been
calculated as

Pl�t� = 4��
0

R

r2��l�r,t��2dr ,

�l = − Ṗl/Pl.

After some initial phase the occupation probability decays
with a constant rate �Fig. 8�. The decay rate increases with
the quantum number l. The dependence of the decay rate on
the quantum number l and the height of the barrier is shown
in Fig. 9.

In summary, the use of radiation boundary conditions al-
lows one to efficiently compute the long-time evolution of
spatially unbounded quantum systems. From a generic model

of quantum tunneling through a spherically symmetric poten-
tial barrier, the angular dependence of the time asymptotic
tunneling rates has been obtained by this method.

V. CONCLUSION

We have given an exact analytical expression for radiation
boundary conditions of the TDSE which is local in the space
of spherical harmonics Yl

m�� ,��. The result is a convolution
integral which maps the boundary value at time t to the his-
tory of boundary values at earlier times t�=0¯ t. The con-
volution kernels show the remarkable effect of being less and
less sensitive to the earlier history of the system for rising
values of l, which should make it possible to truncate the
convolution integral and thereby to reduce the computational
effort considerably.

Our discretized version of the radiation boundary shows
an error of order ��r2 ,�t2�, which is of the same magnitude
as the error of the commonly used Crank-Nicolson algorithm
for the solution inside the computational volume. The Nu-
merov algorithm, which is correct up to a higher order in
space would also be compatible with the radiation boundary
conditions at the cost of inverting an almost tridiagonal ma-
trix in each time step.

To demonstrate the basic feasibility of the method, the
computations have been restricted to spherically symmetric
problems. However, it is suggested that the boundary condi-
tions can also be applied to more general problems without
spherical symmetry inside the computational volume. The
only requirement is that the interaction is localized within a
spherical volume. The method could also be applied in laser-
atom interaction simulations if the computations were carried
out in the Kramers-Henneberger reference frame, in which
an electric dipole laser field is represented by a localized �but
oscillating� atomic potential.
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